

PRISM Membranes Air Products and Chemicals, Inc. 11444 Lackland Road St. Louis, MO 63146-3544 Telephone (314) 995-3300 Fax (314) 995-3500 www.airproducts.com/membranes

Mr. Gil Schoener President Branick Industries 4245 Main Avenue Fargo, ND 58107

November 18, 2004

Dear Gil:

This is in response to your request for a review of scientific principles relating to the use of nitrogen as a gas for tire inflation.

- 1. Why does oxygen migrate out of tires quicker than nitrogen?
- 2. Why does nitrogen not expand and contract as much as air?

Answers:

- 1. Oxygen migrates out quicker than nitrogen, because:
 - a. Permeability coefficients measured for oxygen, P O_2 , are higher than the values for nitrogen, P N_2 , in all known rubbers (elastomers), including those typical of tires. The ratio of the permeability coefficients, P O_2 divided by P N_2 , is between 3 and 4 depending on the particular rubber. This means that oxygen permeates 3 to 4 times faster through rubber than does nitrogen, other conditions being equal;
 - b. oxygen is a <u>smaller</u> molecule than nitrogen (as determined by a wide variety of measurements of molecular size); this is true despite the fact that molecular weight of O_2 (32) is greater than that of N_2 (28), which might suggest that oxygen is larger than nitrogen;
 - c. relative permeabilities for oxygen and nitrogen are dominated by the difference in size of the molecules.
- 2. There is no significant difference in expansion and contraction characteristics of nitrogen, compared to air, when moisture is absent.
 - a. Expansion or contraction of either air or nitrogen occurs to very similar extent, in response to changes in temperature, in the commonly encountered range of temperatures and pressures relevant to discussion of tire inflation.

- b. There is no practical difference as long as the gases are dry, with respect to the effect of temperature on pressure in an essentially fixed volume container, such as in a tire.
- c. Water is usually present in the case for conventional compressed air. At lower temperatures, as a liquid, water occupies very little volume. However, as temperature increases, liquid water vaporizes to become a gas and its volume expands, causing total pressure to be higher in the tire, than would be the case with dry gas. Thus, the presence of water in a tire contributes to pressure variations as temperatures change.

Please find attached several pages of more detailed information. I provide a Summary, explaining in plain language several factors at play in tires, comparing using Nitrogen to using conventional compressed air. In Appendix, I provide more detailed technical information drawn from credible literature sources.

If I may be of further assistance, please contact me or our Sales/Marketing Specialists, Bill Phelps and Phil Powell in St. Louis.

M. Keith Murphy, PhD Air Products Research Associate (314) 995-3434 murphymk@apci.com

Summary - Nitrogen compared to conventional compressed air for tire inflation

Benefits:

1. Maintain proper tire pressure longer with Nitrogen than with compressed air

2. Reduced degradation of rubber's mechanical properties caused by oxidation, in the absence of oxygen, using Nitrogen

<u>Composition differences</u> between membrane-generated Nitrogen and conventional compressed air:

Oxygen and moisture are almost completely removed from air by the membrane.

Explanations for the benefits of using membrane-generated Nitrogen compared to compressed air for tire inflation

1. Better inflation pressure maintenance using Nitrogen:

<u>Nitrogen permeation through the rubber is much slower than oxygen permeation.</u>
 Measured permeability in all known rubbers is faster for O2 compared to N2, by factors ranging from 2.4 to 4.7, depending on the rubber.
 Permeability of gases is generally faster in some rubbers than in other rubbers, but all rubbers permeate O2 faster than N2 by a ratio of about 3 to 4.
 Oxygen permeates faster because it is a smaller molecule than is nitrogen.
 Thus, any tire filled to proper pressure will hold that pressure longer, if the higher permeability component (O2) is not in the tire in the first place.

2. Reduced oxidative degradation of rubber, because oxygen is absent, using Nitrogen: according to J. D. Baldwin, et.al., (Ford Motor Co.), in "Passenger tires inflated with nitrogen age slower", Rubber & Plastics News, pp. 14-19, Sept. 20, 2004

<u>Oxygen chemically reacts with rubber,</u> <u>causing the rubber's mechanical properties to degrade</u>. Nitrogen does not react with rubber. <u>If oxygen is absent or present at much lower concentration</u>, rubber mechanical properties are more stable over time.

Do tires run cooler ?:

Tire run temperature is influenced by many factors, including: Proper inflation Rolling resistance Road conditions Speed Outside environment temperature Vehicle load

Temperature influences gas pressure.

Heating a gas in a fixed volume container increases gas pressure (P₁/T₁ = nR/V = P₂/T₂) and cooling decreases gas pressure. For example, a truck tire filled to 100 psig at 60F, increases in pressure to ~118 psig at 140F; a car tire filled to 30 psig at 60F will increase in pressure to ~ 37 psig at 140F.
For temperatures and pressures near common experience, air, or O2 or N2, all behave very similarly in this respect.
Thus, there is no significant difference in pressure changes, comparing air and N2, due to gas temperature effects alone (that is, as long as either gas is "dry").
Water, however, can exist as liquid or as vapor (i.e., a gas) and water changes from liquid to vapor over the relevant range of temperatures.
The "vapor pressure" of water is very sensitive to temperature, increasing from 0.26 psi at 60F to 2.89 psi at 140F.
If there is liquid water in the tire at 60F, as does occur with conventional compressed air, water's vapor pressure contributes a small additional amount to pressure at 140F.
If dry air or dry N2 is used to fill the tire, the effect of water on pressure is eliminated.

Tire heating will be greater, if proper inflation pressure in not maintained.

Over time, <u>a tire filled with air, will loose pressure faster, due to faster permeation of O2</u>. This will contribute to under-inflation of the tire, absent frequent pressure checks. Under-inflation may contribute to excessive mechanical flexing of the tire, which will contribute to additional road resistance and frictional heating. Thus, improper inflation is a principle contributor to excessive tire heating.

Nitrogen helps better maintain proper tire inflation pressure, compared to compressed air.

Do tires wear longer?

Tire wear is influenced by many factors:

Proper inflation pressure (see above discussion)

Rubber's mechanical properties are more stable, if oxygen is not present.

<u>Appendix</u>

Gas permeability data for various rubbers (elastomers)

1. textbook	(2.				3.			
Physical C	hemistry							Polymer Hand	book			Permeability F	properties of Plastics	and Elastomers	
by W. J. M	loore							by J. Brandrup	, E. H. Imm	nergut, editors	5	by L. K. Mass	ey		
3rd Ed., 19	62, Prentis	s-Hall publ.	, NJ					2nd Ed., 1975	Wiley-Inte	rscience publ	L, NY	2nd Ed., 2003	, Plastics Design Lil	orary publ., NY	
pp. 228-22	3, and Tabl	e 7.5 in Cha	apter 7 , Kineti	: Theory of Ga	ses			pp. III-229-239	Ch. 3, Per	meability Coe	efficients	pp. 543-549, A	Appendix II, Permeat	ion Rates	
molecular	dimensions	(in Anastor	⊥ m units.10∿1)) meters) obta	ined from va	rious experi	imental methods								
and from p	otential cal	culations		, í											
								Permeability c	oefficient, a	t standard T	= 250			11.00 - 11.1	
								measured gas	flux (volum	e/time) acros	s a sample of known	thickness and	area at known pres:	sure differential	
units = x10~10 [(cm/3)*(cm)/(cm/2)*(sec)*(cmHg)]															
gas molecule	from gas viscosity data	from molecular refractive index data	from density data, closest packing in solid state	from van der Waal's radii calculations	from Leonard- Jones potential calculation	molecular weight of the gas (grams /mole)		natural rubber	butyl rubber	neoprene rubber	poly(1,3-butadiene)	gutta percha	poly(butadiene-co- acrylonitrile) 80/20	poly(isoprene- co-acrylonitrile) 74/26	EPDM rubber
								cis- poly(isoprene)				trans- poly(isoprene)			
helium	2.00	1.48		2.48	2.37	4.00			8.4				16.9	7.8	
02	2.96	2.34	3.75	2.34	3.43	32.00		23.3	13	40	19	62	82	0.85	16.0
N2	3.16	2.40	4.00	2.40	3.62	28.00		9.4	0.32	1.2	6.4	2.2	2.5	0.18	5.5
argon	2.86	2.96	3.83	2.86	3.35	40.00		22.8		3.8					
water vapo	r							2290	37.5	910		510			
							ratio (P O2/P N2)	2.5	4.0	3.3	3.0	2.8	3.2	4.7	2.9
								Oxygen is high	ner permeal	oility than nitr	ogen through all rubb	iers			
								Absolute value	of the pern	neability depe	ends on the type of r	ubber			
Higher permeability reflects "tighter packing of rubber polymer chains", molecular stru							lecular structure in t	he solid							

1. van der	Waal's co	orrection du	ie to molec	ules being	a "finite" re	al size,			
rather than a	an "idealiz	ed" points	of zero size						
applied to co	orrect the	"Ideal Gas	Law" from I	Kinetic The	ory of Gase	es	tw	o molecule:	6
Ideal Gas La	9147	P*V = n*R	*T			radius	n	ard spheres	
correction fro	om van de	r Waal	P*(V - n*b)) = n*R*T				1.000	
								1	``
"b" is called	the "exclu	uded volum	e" per mole	ecule			-	$\langle \cdot \rangle$	
Two molecul	stant of pr	oportionalit Lannroach	y, called th each other	more close	stant dv than a d	istance "d'	. (+	<u> </u>)
This assume	es a simpl	e but unrea	alistic "hard	sphere" m	odel of mol	ecules.		A	
The exclude	d volume j	per pair is a	a sphere of	radius = d	of volume =	= 8(4/3)(pi)(r^3),	``	,i
								``	
								←→	
								diameter	
which has a	volume pe	er molecule	e = 4(4/3)(p)	i)(r^3).					
Thus molec	ular radius	s (r) and di	emeter (d=2	?*rì can he	calculated				
mas, molec			anneter (d=2		calculated.				
2. Leonard	l-Jones p	otential ca	lculation						
More rigorou	is analysis tential" fur	s of interac	tion betwee	n real mole	cules inclu	des effects e to descri	of energy fil he these int	elds around	molecules.
From viscos	itv data. d	liameters o	f molecules	s can be ob	tained. usir	na the Leon	ard-Jones p	otential. ísi c	ımaì
	<u> </u>					Ĭ			
"sigma" is a	distance	at which th	e potential	energy of i	nteraction b	etween nea	arest neighb	or molecule	s vanishes.
	iooooitu	io proport	ional ta	foguero rec	-+ / አ ብስ*ፐ1	/ (ciamo)))			
V	iscosity	is proport	ionai (o	[Square rol	JE (10100) 1]	/ (siyina) 2			
"sigma" is "e	effective m	olecular ra	dius", analo	ogous to "e	xcluded vol	ume" van d	er Waal's di	escription (a	bove)
Rather than	assuming	the molec	ules are "ha	ard spheres	", having a	discrete ou	ter surface,		· · · · · · · · · · · · · · · · · · ·
the molecule	e's outer e	xtent is de	fined as a c	listance wh	ere its pote	ential energy	/ for interac	tion	
with another	molecule	is so smai	i as fail to e	essentially	zero.				
3. Density	of solidie	d gases, n	neasured a	at very low	/ temperat	tures			
density of th	ie solid = i	mass/volun	ne or grams	s/volume					
Assuming na that closest	ard sphere	e molecule:	s, simple gi enace hetw	eometry sni een snhere	ows e of 26% of	f the total w	lume		
Thus only 74	4% of total	l volume is	actually sp	iace occupi	ed by the n	nolecules ir	n the solid.		
Molecular w	eight (MW	/) of a mole	cule is a nu	umber equa	l to a weigh	nt in grams	of 1 mole of	f that type o	f molecule.
1 mole is a	32 grams/ verv large	mole, MVV number of	(N2) = 28 (molecules (grams/mole 5 022*10×23	3 molecules	ner mole			
T mole to a v	ery large		Indicedies	0.022 10 2.	- molecule.				
volume occu	upied by 1	mole of the	e molecules	s = MWV / d	ensity of th	e solid			
			1			1			
and thus dia	upiea by a motors (d') of individu	iecules car	n be used ti Iac	o calculate	the volume			
	(pi) / 61*(6.	.022*10^23)*(d^3) = (0.	.74)*(MW)*i	(density)				
d	I = cube ro	oot [(0.74)*	(MW)*(dens	șity) / [(pi)/E	j*(6.022*10	[^] 23)]			
1 Cae vieg	ooltu io o	rofloction of	fmomontu	m transfor	during collig	ione hotwo	on molecul	n in a daa	
How frequen	tlv collisio	ns occur is	s influenced	by the siz	e of the mo	lecules.	en molecul	es ill a yas.	
i.e., larger m	nolecules	collide with	other mole	cules more	often.				
Molecule dia	ameters (d	l) can be es	stimated fro	m measure	ed gas visco	osity data.			
	I - 00*/-	auoro	[(ni) / D*T*	(MULA 1*4	cocitu/b)				
d	i – (3/2)"(9	quare root	T(bi) \ K. L.	(WIW)])"(VIS	ου οι τη το ματάλου τη				
5. Refractiv	ve index	is one mea	sure of the	interaction	of light, ele	ectromagne	tic radiation		
passing thro	ugh (but n	ot absorbe	d by) matte	er.					
When the el	lectric field field induc	l componer	nt of light in Stic momor	teracts with	n molecules torial	s in a mater	ial,		
and this effe	ct respons	sible for the	refraction	of the light	passing thr	ough the m	aterial.		
We see visu	ally the re	fraction as	an apparer	nt bending o	of the light I	eaving, rela	tive to enter	ing, the mat	erial.
							(T) (1)		<i>cr.</i> 1.
Magnetic m	oment (m)	is related	to both the	size of the	molecule a	nd strength	(F) of the e	lectic field o	t light:
n An estimate	u — (1°3)°F Lof the rad	ius of the r	nolecule e	nd thus its	l diameter (d	l = 2*r) car	he ohtaina	d	
. In commute	51 1.10 140		a		Lamoror (d), car	. So ostanie		
Dia			1						
based on the	i es amon e different	g in the c	aiculated v	values of r	hode price	from sever	al factore		
including err	ors assoc	iated with e	experiment:	al measurer	ments of vis	scosity, refr	active index	and density	'.
and with the	oretical m	odels used	, such as v	vhether mo	lecules are	"hard sphe	res" or		
with particul	ar mathen	natical form	is used to a	describe "er	nergy poter	itials".			

Experime	ntal meas	urements (of gas Peri	meability (Coefficient	ts for differ	ent rubbe	rs (elastom	ers)	
are not dep	oendant on	choice of a	theoretical	model of m	nolecular sl	hape and su	uffer from fe	w experime	ntal errors.	
			top vie	ew of sampl	le disk					
	/					higi	her pressur	e (feed side	Pf= x cmHg)	
			\sim			side view			<u>.</u>	
			\rightarrow							
									*	
									thickness (cm)	
									() /	
				gas flux	across th	e sample =				
				(volur	ne/time) =	(cm^3/sec)	•	Ļ		
	\sim				()	ĺ		•		
						lower p	, pressure (pe	ermeate side	e = Pp = y cmHq)	
4			>							
	d = diame	ter of sampl	le disk							
I				pressure d	ifference au	cross samp	le = [Pfeed	- Ppermeat	e] = (x-y) cmHa	
	area = (pi)	*(d/2)^2		, pressure d	ifference a	cross samp	le = driving	force for per	rmeation	
	(cm^2)							· · · ·		
			qas flux =	[(permeabil	ity coefficie	ent)*(area)*(pressure di	fference)] / ((thickness)	
			Ŭ							
			permeabili	ty coefficier	$t = [(flux)^*]$	(thickness)]	/ [(area)*(p	pressure diffe	erence)]	
					1	<u> </u>	1			
					+	+		K		
	ĸ	bermeability	coefficient	=	(cm^3/sec)*(cm) / (cm	1^2)*(cmHq))		
				or						
	ĸ	oermeability	coefficient	=	(cm^3)*(cr	n) / (cm^2)*	, (sec)*(cmH	la)		
						í í í				
	Most mate	erials show t	measured v	, alues of pe	rmeability	coefficients	that make	it convenien	t	
	to use a s	tandard unit	of 10^-10 i	n the dimer	nsional unit	s of (cm^3))*(cm) / (cm	n^2)*(sec)*(c	mHg).	
	This unit is named the Barrer, after Professor Richard Barrer, an early pioneer in permeation science.									

Calculation of the approximate time required for permeation to result in a significant decrease in tire pressure, assuming case of a typical truck tire inflated with air at 100 psig initially.

This calculation uses "reasonable approximate or typical" values of tire size (volume and sidewall area available for permeation), sidewall thickness, Permeability Coefficients for gases in a "typical" rubber (elastomer), and effects of temperature on permeation rates.

The resulting time is ~11 to 53 days, depending on temperature, for a roughly $1/3^{rd}$ or 7 psi decrease in partial pressure of Oxygen (initially present as about 21 psi of the 100 psi total pressure, decreasing to 14 psi oxygen partial pressure after calculated number of days). During that time a small additional pressure decrease occurs, due to the slower permeation of some nitrogen.

Thus, a tire initially inflated with compressed air to 100 psig will drop in pressure by about 7-8 psi over a few weeks, due to the oxygen permeation effects alone.

These calculations are approximate. Variations in the resulting times for pressure decreases will occur in a real situation. Actual Permeability Coefficients, area available for permeation and effective thickness of the side wall portion of the tire may differ somewhat, depending on actual tire structure, tire dimensions and the characteristics of the rubber of the tire, including effects of fillers such as carbon black in the rubber composition, and whether the rubber is reinforced with relatively impermeable non-rubber components, such as threads of nylon cord or steel.

This calculation appears to be of sufficient validity within reasonable confidence limits. It suggests practical implications, regarding the effects of permeation in the case of tire inflation pressure versus time, and supports a case for tire inflation using nitrogen as beneficial compared to using compressed air.

This calculation simply verifies, using reasonable assumptions, that a practically relevant pressure decrease can be expected to occur, due to permeation of oxygen, if compressed air is used. It also demonstrates that if Nitrogen is used instead, it would take a much longer time for a similar significant pressure decrease to occur, due to permeation effects.

Thus, inflating a tire with Nitrogen, instead of compressed air, provides significantly better maintenance of proper tire pressure.

Consider th	e rubber (elast	omer) of a tire's	side wall :	as a memb	irane,				
to calculate	pressure char	nge due to permo	eation thro	ough the ru	ıbber side	walls of the	ne tire.		
inside a trucl	k tire at 100 psig	g filled with compr	essed AIR						
approximate	tire total volume	e ~280 liters = 280	100 cm^3, fo	or a typical f	truck tire				
total pressur	e Pf = 100 psig	+ 14.7 = 114.7 ps	ia						
composition	= ~20.9% 02 +	~78% N2 + 1.749	% H2O (as:	suming 100°	% RH at 60)F for sourc	e of the air)		
partial press	ures of compone	ents (psia)			amount (vo	olume) of ea	ich compor	ent in the t	ire
02	0.209*114.7	=	24.0	psia	5852	cm^3			
N2	0.78*114.7	=	89.5	psia	21840	cm^3			
H2O	0.0174*114.7	=	2.0	psia	487.2	cm^3			
outside a tru	ck tire is ambier	nt AIR at 1 atm pre	essure (O p	sig = 14.7 p	isia)				
composition	= ~20.9% O2 +	~78% N2 + 1.749	% H2O (as:	suming 100°	% RH at 60)F)			
partial press	ures of compone	ents (psia)							
02	0.209*14.7	=	3.1	psia					
N2	0.78*14.7	=	11.5	psia					
H2O	0.0174*14.7	=	0.3	, psia					
driving force f	for permeation tl	hrough the rubber	of the tire =	= (Pf - Pp) fo	or each con	nponent; no	te 1 psia =	5.17 cmHg	3
02	20.9	psia	=	108.1	cmHg				
N2	78.0	, psia	=	403.3	cmHg				
H2O	1.7	, psia	=	9.0	cmHg				
					Ŭ				
assume tire /	rubber is 1/4 inc	h (0.6 cm) thick							
assume the	area of the tire r	ubber is ~ 10,000	cm^2 for a	truck tire (ju	ust the two	side walls;	ignore thic	k tread or r	im area)
									-
estimate per	meability coeffic	ients for each con	nponent, as	s follows:					
02	10	at 25C (77F)	permeation	n increases	at higher te	emperature	50	at 60C (14	OF)
N2	3	at 25C (77F)			_		15	at 60C (14	OF)
H2O	1000	at 25C (77F)					5000	at 60C (14	OF)
		, ,						,	
calculate init	ial flux through t	he rubber area (cr	n^3/sec) fo	r each com	ponent				
02	4.22E-04	cm^3/sec				2.11E-03	cm^3/sec		
N2	3.39E-05	cm^3/sec				1.70E-04	cm^3/sec		
H2O	2.14E-07	cm^3/sec				1.07E-06	cm^3/sec		
time require	ed for 1/3rd of	each component	to perme	ate across	the rubbe	r of the tire	e		
02	4.58E+06	seconds =	53	days at 25	C or	9.15E+05	sec =	11	days at 60C
N2	2.12E+08	seconds =	2459	days at 25	C or	4.25E+07	sec =	492	days at 60 C
H2O	7.52E+08	seconds =	8699	days at 25	C or	1.50E+08	sec =	1740	days at 60 C